
Authentication components:
Engineering experiences and guidelines

Pasi Eronen
Nokia Research Center

pasi.eronen@nokia.com

Jari Arkko
Ericsson Research NomadicLab
jari.arkko@nomadiclab.com

Extended abstract
February 6, 2004

Abstract

Security protocols typically employ an authentication
phase followed by a protected data exchange. In some
cases, such TLS, these two phases are tightly integrated,
while in other cases, such as EAP (Extensible Authenti-
cation Protocol) and Kerberos, they are separate and
often implemented in different endpoints. However,
careless application of this separation has lead to sev-
eral vulnerabilities. In this paper we discuss reasons
why this separation is often useful, what mistakes have
been made, and what these mistakes have in common.
We then describe some approaches how these problems
could be avoided, especially focusing on EAP in wire-
less LANs. We also present some engineering observa-
tions that should be taken into account when designing
reusable authentication components in the future.

1 Introduction

When designing a new system, a common engineer-
ing practice is to use existing components as building
blocks. Typical examples of such components include
not only things such as IP transport, TCP, XML and
HTTP, but also components providing security services.

One typical examples is running HTTP over TLS.
TLS uses certificates to authenticate the web server
(typically client authentication is implemented by some
other means), and provides encryption and integrity
protection for the traffic. This case is rather simple, and
its properties are easily understood even by those who
are not intimately familiar with TLS.1

1Though occasionally some developers have forgotten that it is not

Other examples of reusable components include
SASL and GSS-API. Both provide an extensible frame-
work for authentication mechanisms, and may option-
ally provide also protection (encryption, integrity pro-
tection, replay protection, etc.) for application traffic.
A common feature of all these approaches is that traf-
fic protection (when present) is handled together with
authentication and key exchange.

However, Kerberos separates authentication/key ex-
change from traffic protection, as does Extensible Au-
thentication Protocol (EAP) which is used for Wireless
LAN authentication, among other applications [7].

In this paper we explore issues related to this sepa-
ration. We begin by exploring in Section 2 why this
separation is often useful. In Section 3, we continue by
presenting some examples of systems having this sep-
aration, and in Section 4 we analyze pitfalls found in
some of them. In Section 5, we present how some of
the pitfalls can be solved in EAP, and finally, Section 6
contains our conclusions from this work.

2 Reasons for separating authenti-
cation and traffic protection

It seems the main reason for separating authentication
and traffic protection is that they can be distributed to
separate endpoints. The following sections discuss var-
ious reasons why this may be desirable.

enough to check that the server has a valid certificate—you must also
check that the DNS name in the certificate matches the URL you’re
trying to access!

1



2.1 Centralized storage of secrets

When authentication is based on shared secrets (or
some other non-public-key based credentials), it is con-
venient to store the secrets in a centralized place, in-
stead of having copies of them around in all nodes that
need to do authentication.

In Kerberos, this would be called a Key Distribution
Center (KDC); in EAP, it is called AAA server (authen-
tication, authorization and accounting); in cellular net-
works, it is Authentication Center (AuC).

In cellular networks, a somewhat similar separation
is also present on the client side: authentication is done
by a smartcard (Subscriber Identity Module or SIM),
which hands the traffic encryption keys over to the mo-
bile phone. However, this situation is quite simple since
a single smartcard is always inserted in a single phone.

2.2 Centralized authorization

PKI could be used for decentralized authentication,
without requiring an on-line authentication server.
However, current PKIs are not that well suited to au-
thorization; either each service has to handle its own
authorization information, or a centralized server for
authorization is needed. Often authentication and au-
thorization information are combined in a single AAA
server.

2.3 Centralized audit trail

When authentication uses a centralized KDC, this
leaves an audit trail at the KDC. This makes e.g. de-
tection of compromised credentials or other “fraud de-
tection” easier.

This “evidence of authentication” is also useful for
charging-related purposes. In typical roaming environ-
ments, the visited operator reports how much services
the user has used, and is paid according to pre-agreed
rates. Having evidence of authentication in the home
operator AAA server prevents a visited operator from
fabricating charges for users who have never been on
the network (of course, the visited operator may still
report inflated usage figures);

2.4 Extensibility of authentication

Experience has shown that there is no single authentica-
tion method suitable for all environments. Centralized
authentication server simplifies implementations since

the nodes providing the various services do not need to
implement all possible authentication methods.

For instance, IEEE 802.11i wireless LAN access
points typically implement only simple shared-secret
authentication themselves, and everything else (such as
passwords, token cards, certificates, or Kerberos) is del-
egated to an AAA server that actually implements the
authentication protocol.

Another aspect of extensibility is the service-to-KDC
authentication. While e.g. Kerberos supports public-
key based authentication of users, services and KDC
must still share a symmetric key. EAP, on the other
hand, allows this authentication to be chosen indepen-
dently of user authentication method.

For instance, in many environments a “transitive”
authentication and authorization via AAA proxies is
enough (and provides scalability when e.g. the num-
ber of WLAN access points around the world can be
huge). This works especially in environments where
e.g. a home (KDC) operator just needs to know that
that the request came from network X, but not which
from WLAN access point in X.

2.5 Different protocol layers

Performance issues can sometimes dictate that the end-
points for authentication and data protection are differ-
ent, or at least that they are implemented on a different
layer. For instance, in NFSv4, it would be desirable
to delegate the traffic protection to the IPsec layer with
widely available hardware acceleration, even if for flex-
ibility and access control reasons the authentication has
to reside at the application.

3 Case examples

(A later version of this paper will give a short overview
of how Kerberos, EAP/IEEE802.11 and UMTS sepa-
rate authentication from traffic protection, highlighting
the similarities and differences between them.)

4 Analysis and problems

4.1 Service identities and lack of them

In Kerberos, the client requests a ticket for a particular
server (identified by a principal identifier, usually com-
prising of service type and host name) from the KDC,

2



and when the session key is used to protect commu-
nication, the client can be assured that it is talking to
the intended server (assuming, of course, that the KDC
is trustworthy and the server in question has not been
compromised).

Currently EAP has no concept of “service identity”
that would be authenticated to the client: the AAA
server might have an identity, but not the node provid-
ing the service. That is, after a successful EAP authen-
tication, the client knows it is talking tosomenetwork
element trusted by the AAA server, but not which one
[3]. The network element can, of course, tell the client
its identity, but this information is not verified by the
AAA server; or in other words, a malicious or compro-
mised server could lie about its identity.

Cellular network authentication mechanisms such as
UMTS AKA have a similar limitation. This “feature”
probably has historical reasons behind it. For instance,
in UMTS the cell is uniquely identified by a digit se-
quence called Cell Global Identification (CGI) [18].
However, since the mobile terminal does not really
know which CGI it should be talking to (simplifying
things a bit, it’s usually the one with the best signal
strength), CGI is not authenticated. (The CGI is not
something that the user would enter or ever see, unlike
in Kerberos where the host name is often selected by
the user)

Probably it was also assumed that a compromise of a
base station would be a rare event, and even if that hap-
pened, the intruder would not be interested in imperson-
ating some other CGI towards the client (because doing
so would not have any real advantage over continuing
to use the real CGI value).

Somewhat similar thing can be found in EAP. In
WLANs, the access points are uniquely identified by
BSSID, a 48-bit random-looking string that is not
meaningful to the user, since BSSID is chosen based
on signal strength. Successful EAP/802.11i authentica-
tion ensures that the user is talking to some WLAN AP
part of the e.g. corporate WLAN, but not which one—
again, authenticating this identity is not that important if
the client cannot anyway tell the difference. Similarly,
it might have been assumed that an attacker who com-
promises an access point would be interested in hacking
into the corporate intranet rather than masquerading as
some other AP towards the client.

The common feature here is that UMTS AKA and
EAP consider authentication as having two different
parties: the client and “the network”. Internally, the net-
work may have different nodes with different roles (e.g.

UMTS authentication information is stored in AuC),
but this structure is not directly visible to the client.

This situation is quite different from e.g. Kerberos,
where service identities (such as host names) are usu-
ally very visible to the client, and different nodes are
offering radically different types of service.

4.2 Attacks across protocols

While in many cases the client is not interested in the
exact identity of a node providing some particular ser-
vice, it can at least know the type of service it is expect-
ing. If this service type is not authenticated, the effects
of security problems can “spread” from one service type
to another. For instance, in EAP a compromised IKEv2
gateway can impersonate a WLAN access point, if same
user and AAA server credentials are used for both.

A different example is the GSM A5/2 attack [6]. An
attacker can use this vulnerability in GSM air interface
encryption to masquerade as a WLAN client with EAP-
SIM [12, 9]. Similarly, if it were later found that, for
instance, IKEv2 has serious weaknesses2, this could be
used to attack WLANs using the same credentials.

There have been proposals to add a “context field” to
EAP methods, communicating the type of service to be
provided [17, 14]. Even without the concept of service
identities, this would prevent attacks from one type of
service to another.

The “context field” is quite similar to “Special
RANDs” that have been proposed for GSM. In this
case, it is not possible to add a new field, so a couple of
bits from the random challenge (RAND) field are used
for that [16, 15].

4.3 Problems in protocol composition

Problems can also occur when several components pro-
viding various functions are composed together in a
system. Asokan et al. [5] presented several examples
where having one component responsible for server au-
thentication and another one for client authentication
could result in man-in-the-middle vulnerabilities.

5 Adding service identities to EAP

In addition to adding a “context field” to EAP, there
have been some discussion about adding proper service

2We do not believe this is likely, and this example is for illustrative
purposes only.

3



identities as well.
While in some cases, authenticating the service as be-

ing part of the legitimate “network” is enough, there are
cases where the client could be interested in parts of the
network structure, and could, in some cases at least, tell
the difference between nodes that it’s “supposed to be”
talking to and nodes that it’s not interested in talking to.
This is emphasized if some parts of the network are in
fact less “trustworthy” than others.

For instance, in wireless LANs, the client could also
know the Service Set Identifier (SSID) of the WLAN.
This is a usually human-readable string identifying
some set of access points, and in many cases the WLAN
client software shows it to the user, or asks the user to
select the right SSID from a list.

We are currently working on a mechanism to add this
functionality (sometimes called “channel bindings” and
“connection bindings”) to existing EAP methods in an
extensible way. The basic idea is to embed a “con-
text block” to an EAP messages that are protected by
the method-specific integrity check. This context block
would contain not only the service type (e.g. “IEEE
802.11i wireless LAN”) but also service identities each
party could be interested in. For wireless LANs these
could be BSSID and SSID, and possibly also a human-
readable network name (e.g. “Joe’s Coffee Shop, Mem-
phis, Tennessee”).

Actually implementing this requires the ability to
connect various types of identities. For instance, if Di-
ameter protocol over TLS is used between the WLAN
access point and AAA server, the identities that are
authenticated are usually the DNS names of the par-
ties. However, the WLAN client is unlikely to be
interested in the DNS name of the WLAN access
point, which could be something quite cryptic such
as “ap1733.mph.tn.example.net”. Therefore, the AAA
server has to be able to map this securely to more mean-
ingful identities such as “Joe’s Coffee Shop, Memphis,
Tennessee”. This more meaningful identity could then
be sent to the client in the “context block”.

This approach extends what is possible in Kerberos:
there it is usually assumed that a host name (i.e., a DNS
name) is the service identity.

6 Conclusions

In this paper we have analyzed the reasons why sepa-
rating authentication from traffic protection is often de-
sirable, and how this has been implemented in various

systems. Many of these implementations have gotten
things wrong, often due to historical reasons. How-
ever, it may not be fair to say that people have been
re-inventing the wheel badly—often they have tried to
solve problems that better-designed systems, such as
Kerberos, did not solve.

One of these real-world requirements is the choice
of authentication mechanisms. While from an abstract
viewpoint, PKIs might be more “secure” (whatever that
means) than passwords, in reality security is mostly
about other things than cryptography—and then issues
such as comparing required investments with reduction
in risks are appropriate criteria.

One could also say that politics has had a lot to do
with many of these problems: sometimes there has been
reluctance to modify protocols to better answer real-
world requirements, so to avoid spoiling “clean” pro-
tocols with messy real-world details.

Consider the case of Internet Key Exchange: Origi-
nal IKE did not support authentication based on token
cards or one-time passwords. Since then, there has been
various efforts (XAUTH, CRACK, PIC, IKEv2), but af-
ter more than five years of discussion, there is still no
standardized way to e.g. authenticate users with token
cards (vendors certainly do have their own proprietary
solutions). All along, the argument seems to have been
“all password-based authentication is insecure; IPsec is
designed to be secure; therefore, you have to deploy a
PKI for it”.

We do not agree with this. While it does not make
sense to engineer bad security solutions, it does make
sense to engineer security solutions that solve real-
world problems, rather than require the real-world prob-
lem to adapt to some abstract notion of “perfect secu-
rity”. We believe that authentication mechanisms are an
example of a “tussle space” [8]; something that should
not be hardcoded into architectures or protocols, but in-
stead left open to choice.

Related to the choice of authentication methods is
also the choice of identity types. We argued earlier that
e.g. in wireless LANs, the DNS name of the WLAN
access point is not a meaningful identity for the WLAN
client. Since ultimately these identities should be some-
how connected to theintent of some person, different
applications should be able to use different identities,
and a single service may require multiple identities of
different types.

These considerations suggest that we will see more
systems separating authentication and traffic protection,
some of them probably repeating the same mistakes al-

4



ready made. The examples we have used (EAP, wire-
less LANs, and cellular networks) certainly did not
get things right the first time. In this paper we have
highlighted some similarities between these mistakes in
hope that they could be avoided in the future.

Acknowledgments

We would like to thank N. Asokan and Valtteri Niemi
for their valuable comments and suggestions.

References
[1] Martin Abadi and Roger Needham, “Prudent Engineer-

ing Practice for Cryptographic Protocols”, IEEE Trans-
actions on Software Engineering 22(1):6–15, January
1996.

[2] Bernard Aboba and Pat Calhoun, “RADIUS (Remote
Authentication Dial In User Service) Support For Exten-
sible Authentication Protocol (EAP)”, IETF RFC 3579,
September 2003.

[3] Bernard Aboba, Dan Simon, Jari Arkko, and Henrik
Levkowetz, “EAP Key Management Framework”, work
in progress (IETF Internet-Draft draft-ietf-eap-keying-
01.txt), October 2003.

[4] Jari Arkko and Henry Haverinen, “EAP AKA Authen-
tication”, work in progress (IETF Internet-Draft draft-
arkko-pppext-eap-aka-11.txt), October 2003.

[5] N. Asokan, Valtteri Niemi, and Kaisa Nyberg: “Man-
in-the-Middle in Tunnelled Authentication Protocols”,
Proc. International Workshop on Security Protocols
2003.

[6] Elad Barkan, Eli Biham, and Nathan Keller, “In-
stant Ciphertext-Only Cryptanalysis of GSM Encrypted
Communication”,Proc. CRYPTO 2003.

[7] Larry Blunk, John Vollbrecht, Bernard Aboba, James
Carlson, and Henrik Levkowetz, “Extensible Authen-
tication Protocol (EAP)”, work in progress (IETF
Internet-Draft draft-ietf-eap-rfc2284bis-07.txt), Novem-
ber 2003.

[8] David D. Clark, John Wroclawski, Karen R. Sollins, and
Robert Braden, “Tussle in Cyberspace: Defining Tomor-
row’s Internet”,Proc. ACM SIGCOMM 2002.

[9] Ericsson and TeliaSonera, “Implications of the A5/2 At-
tack for 3GPP WLAN Access”, 3GPP TSG SA3 work-
ing document S3-030733, November 2003.

[10] Pasi Eronen, Tom Hiller, and Glen Zorn, “Diameter
Extensible Authentication Protocol (EAP) Application”,
work in progress (IETF Internet-Draft draft-ietf-aaa-
eap-03.txt), October 2003.

[11] Institute of Electrical and Electronics Engineers, “Draft
Amendment to Standard for Telecommunications and
Information Exchange Between Systems – LAN/MAN
Specific Requirements – Part 11: Wireless Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications: Medium Access Control (MAC) Se-
curity Enhancements”, work in progress (IEEE draft
802.11i/D7.0), October 2003.

[12] Henry Haverinen and Joseph Salowey, “EAP SIM Au-
thentication”, work in progress (IETF Internet-Draft
draft-haverinen-pppext-eap-sim-12.txt), October 2003.

[13] Charlie Kaufman (ed.), “Internet Key Exchange
(IKEv2) Protocol”, work in progress (IETF Internet-
Draft draft-ietf-ipsec-ikev2-12.txt), January 2004.

[14] Hugo Krawzcyk, “Changes to EAP methods”, mes-
sage on eap@frascone.com mailing list 2003-09-03,
http://mail.frascone.com/pipermail/public/eap/2003-
September/001638.html.

[15] Nokia, “Using Special RANDs to separate WLAN and
GSM/GPRS”, 3GPP TSG SA3 working document S3-
040100, February 2004.

[16] Orange and Vodafone, “Introducing the special RAND
mechanism”, 3GPP TSG SA3 working document S3-
030698, November 2003.

[17] Jose Puthenkulam, Victor Lortz, Ashwin Palekar, and
Dan Simon, “The Compound Authentication Binding
Problem”, work in progress (IETF Internet-Draft draft-
puthenkulam-eap-binding-04.txt), October 2003.

[18] 3rd Generation Partnership Project, “Technical Speci-
fication Group Core Network; Numbering, addressing
and identification (Release 5)”, 3GPP Technical Speci-
fication 23.003 V5.8.0, December 2003.

[19] 3rd Generation Partnership Project, “Technical Specifi-
cation Group Services and System Aspects; 3G Secu-
rity; Security Architecture (Release 5)”, 3GPP Techni-
cal Specification 33.102 V5.1.0, December 2002.

5


