The Routing Scalability Problem

TKK Future Internet meeting, May 2008

Jari Arkko

Expert, Ericsson Research Internet Area Director, IETF

Outline

- The scalability problem
- Solution directions
- Things to think about

The Scalability Problem

1000

TAKING YOU FORWARD

The Routing Scaling Problem

- The ability of the Internet routing system to cope with the growth of the Internet has been a concern during almost the entire life of the Internet
- The routing and addressing architecture has stayed very similar from the initial days
 - BGP designed in the 1980's
 - CIDR introduced in the 1990's
 - IPv6 designed in the 1990's
- Recent concern from major operators about the growth of the routing problem beyond
 - The growth of the Internet itself
 - Moore's law

Pressures Facing the Routing System

Organizations want independence from providers

- Due to competition, there is a desire to be able to switch providers
- "Provider Independent" address space
- IPv6
 - Need both IPv4 and IPv6 tables
- Multihoming, traffic engineering
- Errors, fraud

Measurements – Prefix Growth

Table Size – Main Observations

- Table sizes grow 2x faster than real growth
- One (conservative) analysis predicts 2M entries in 10 years

Measurements – BGP Updates

Distribution of Updates

Updates – Main Observations

- Most of the net is very stable
- Parts of the net are very unstable
- Everybody pays for the instability
- Problem is getting worse
- Main reasons why the sources are updating:
 - Traffic engineering
 - Unstable configurations
 - New routing applications
 - Address space theft

Architectural Issue

Architectural principle to uphold:

- A network should be able to implement reasonable internetworking choices without unduly impacting another network's operation
- The issue, at an architectural level:
- Some of today's internetworking seem only implementable in ways that threaten this principle.

How Serious Is This?

- Concern: the growth exceeds what Moore's law can provide for routers
 - Forwarding, routing protocol computations, routing protocol communications, ...
- Power usage, cost, functionality, investment lifecycle will suffer if this is the case
- However, there is reason for optimism
- Forwarding is a small factor in router power usage (power = line speed X per-packet actions)
- Latest routers use parallelism and new memories

How Serious Is This? (Cont'd)

- Punchline: The routing system is not about to fall over; lots of runway
- But the long-term trend is wrong; if we want to change this, the time to start working is now
- And we need an Internet which can scale to hundreds of billions of end hosts and (at least) millions of multihomed, provider independent networks

Solution Directions

1140

TAKING YOU FORWARD

What Can We Do?

- Faster routers Engineering by microelectronics and router designers
- Update dynamics BGP adjustments, better operational practices
- Bigger networks, traffic engineering, multihoming, e2e transparency, and mobility would benefit from architectural changes
 - Identifier/locator separation is a promising approach Edges (stable "identifiers")

Things to Think About (while working on architectural changes)

E

TAKING YOU FORWARD

Some of the Hard Parts...

Issues with architectural changes:

- Incrementally deployable
 - Connectivity to the "old" Internet
- Part of the reason for the current situation is lack of a "routing economy" and pushback for new entries
 - Will any new technology change that?
 - Incentives for deployment
 - Convincing people to behave differently, even when they have existing tools

Hard Parts (Cont'd)

- What are the costs (security, complexity, ...)?
 - Are there negative effects to other parts of the Internet?
- What other implications are there?
- Ability to pass addresses in applications
- Caching behaviour
 - Delaying or losing first packets to a site
 - DoS vulnerabilities

Ongoing Work

- Routing research group (RRG) at the IRTF
- GROW and IDR Wgs
- Possible BOF at the next IETF
- Various research projects

TAKING YOU FORWARD

Summary

- In the short term, this is "only" an engineering issue
- But there are architectural problems that should be addressed
- Ongoing work in the IRTF but many problems remain
- Key issues are deployment incentives and not breaking others parts of the Internet while saving routers

