
Tiny COAP
Sensors

draft-arkko-core-sleepy-sensors

Jari Arkko, Heidi-Maria Rissanen,
Salvatore Loreto, Zoltan Turanyi,
and Oscar Novo

Ericsson Research

IETF | 2011-03-31 | Page 2

Outline

1. Motivation

2. Implementation highlights

3. Major architectural and design choices

4. Reflections on COAP

5. Implementation techniques

Legacy, Non-IP Technology

Can we do the same on IP?

YES we can!

IETF | 2011-03-31 | Page 4

Motivation

The goal was to create IP(v6) based sensors with

1. Natural support for sleeping nodes

2. Build something so simple that it could be re-
implemented later with gates (not CPUs)

3. Communication models that fit the problem at hand

4. Good design from user perspective

IETF | 2011-03-31 | Page 5

Non-Goals

This is NOT

1. A general purpose implementation of COAP or any other
protocol; we only implement what is actually needed in
the application context

2. An implementation for general purpose computers

3. RFC compliance exercise. It works. 'nuff said.

IETF | 2011-03-31 | Page 6

Highlights from the Implementation

Consists of 48 lines of assembler code

Ethernet, IPv6, UDP, COAP, XML, and app

Multicast, checksums, msg and device IDs

Approaches theoretical minimum power usage

No configuration needed

Look for packets to ff02::fe00:1 in the IETF wired network!

IETF | 2011-03-31 | Page 7

Making Small Implementions:
Problem 1 – Sleeping Nodes

The device should ideally sleep as much as possible

The fundamental issue is having to wait for responses
• Asking for an address from DHCP, waiting for a prefix from RA, waiting for

DAD responses, waiting for COAP/HTTP requests, or waiting for COAP
registrations

The communication model is wrong!

Do this instead:

1. Sensors multicast their readings

2. A cache node collects the messages

3. Other nodes access the cache at any time

C

S

S

S

S

U

IETF | 2011-03-31 | Page 8

Power Savings Comparison

Lets assume periodic messages once per minute. On a
10Mbit/s interface sending one message takes 100 us, i.e.,
ratio of sleep vs. awake is 600000x

A node that wakes up for one second every minute to listen
has a ratio of only 60x

10000x difference!!!

Even if we assume that it takes ten times more to wake up
and process the packet than the actual line speed is, we
still get a 1000x difference

IETF | 2011-03-31 | Page 9

Making Small Implementions:
Problem 2 – Broadcast Storms

Have to avoid everyone receiving everything

IPv6 multicast can solve this problem nicely:

1. Use multicast, not broadcast (duh!)

2. Sensor-class specific multicast groups
– Only those that want to know need to receive the packets
– Similar to solicited node multicast address trick in ND

– Using FF02::1:FEXX:XXXX in the prototype, XXXXXX = 1 for
temperature sensors

3. Randomized sleep duration

IETF | 2011-03-31 | Page 10

Making Small Implementions:
Problem 3 – Address Configuration

How do we get an address without having to stay awake?

The solution:

1. Use IPv6 link-local source addresses
– No need to wait for RAs or remember prefixes

2. Use MAC-address -based generation of these addresses

3. Do not employ DAD
– Not quite according to the RFC... but works better

IETF | 2011-03-31 | Page 11

Making Small Implementions:
Problem 4 – Zero Configuration

How do we avoid having to configure these tiny devices?

The solution:

1. Sensor IDs are burned into the hardware at factory

2. Sensors use multicast, no need to know any specific
destination addresses

3. All configuration that might be needed (e.g., sensor X is
at room Y) happens at the gateway/cache node

IETF | 2011-03-31 | Page 12

Making Small Implementions:
Problem 5 – Checksum

Checksum code is bloat

Fortunately 1s complement
checksums are commutative and
transitive

Change a word from 0 to x and
you only need to recalculate:

sum = ~(x+~sum);

We can use precomputation +
recalculation

IETF | 2011-03-31 | Page 13

Draft Schema for HW
Implementation

IETF | 2011-03-31 | Page 14

Reflections on COAP

Some detailed issues discussed in the draft & CORE WG

But there are also fundamental concerns

The lightweight nature of COAP is more about small
changes to syntax and behavior (TCP=>UDP) than about
eliminating reasons behind complexity and power usage

Communication models are the key here

COAP can (perhaps) be used in sleepy nodes, but it
requires great care

COAP observer spec to be revised

IETF | 2011-03-31 | Page 15

Communication Models: 1. Send-Only

IETF | 2011-03-31 | Page 16

Communication Modes: 2. Server

IETF | 2011-03-31 | Page 17

More About the Implementation

48 lines:

25% initialization of A/D converter

25% binary-to-decimal conversion

25% checksum calculation

25% other

Also requires a 160 byte message template

Pre-filled and pre-computed as far as possible

Needs to be copied from ROM to RAM

No RAM necessary across invokations

Other

Assumes a real-time clock for COAP message IDs

IETF | 2011-03-31 | Page 18

Implementation Techniques

Selecting the right communication model

Employing the freedom that the protocol allows for the
sender to choose optional protocol features and
behaviours

Selecting a single stack (IPv6)

Building only the necessary stack components around a
fixed application

Monolithic implementation (not layered)
– For instance, the message template has everything from Ethernet

header to XML

Message templates

IETF | 2011-03-31 | Page 19

Observations About the
Implementation Techniques

The same implementation technique would have worked
for JSON, XML, binary formats

Binary format would have saved ~10 instructions, ~40%
message length

Compressed formats would be extremely complex

Negotiation would have negated any simplifications

Logic-based implementation would be feasible, but
decimal formats make it too complex (hex OK though)

IETF | 2011-03-31 | Page 20

Final Piece of Advice

We are protocol engineers and like to tinker with protocol
designs, lighter-weight versions of protocols, enhancements
that improve efficiency

Lets resist that temptation!

Better implementations are often the answer

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21

