\\

Using LLMs in Networking

The case for understanding protocol ot te bo o
“Ianguages” protocol LLM

November 2024

IETF-121 Side Meeting on LLMs for Networking
Jari Arkko, Ericsson Research, Finland

Context and goals

\\

Lots of excitement on generative Al for
« Human languages, chat bots

« Image and video creation

* Programming assistance

« Search and documents

Cool, but not at the heart of things from
a protocol or network engineer
perspective

And excitement on Gen Al for networking
* Network design

* Intents, configuration, etc.

* |dentify patterns or anomalies
 Incident management

Cool and more at the heart of things, but is
this an exhaustive list?

Context and goals

\\

What if LLMs were able to also understand
and converse natively in protocol
messages?

* There's multi-modal generative Al and
support for multiple languages

» Could we “speak” protocols, too?

“Take a PCAP file and
drop it into an LLM"

“Protocol
LLM" S

Could we make
something
interesting

happen?

e Explain what is going on
e Generate test data
e Quick prototyping / simulation

\\

Example Use Case:

Use Case Context: Training traces & Problem traces

\\

Problem
Training trace

traces

M strace.apache.5.pcap

® R E] & = E aaqaf

Time Source Destination Protocol | Lengtl Info
. 000000 172.17. 172.17.0. TCP 80 59304 - 8@ [SYN] Seq=0 Win=6424@0 Len=0 MSS=146@0 SACK_PERM TSval=1122461665 TSecr=0 WS=12§

0.1
.000012 172.17.0.2 172.17.0. TCP 80 80 - 59304 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=2963594550 TSe
.000041 172.17.0.1 172.17.0. TCP 72 59304 - 80 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=1122461665 TSecr=2963594550
.857502 172.17.0.1 172.17.0. HTTP 89 Continuation
.857547 172.17.0.2 172.17.0. TCP 72 80 - 59304 [ACK] Seq=1 Ack=18 Win=65152 Len=0 TSval=2963602408 TSecr=1122469523
.857839 172.17.0.2 172.17.0. HTTP 478 HTTP/1.1 400 Bad Request (text/html)
.857879 172.17.0.1 172.17.0. TCP 72 59304 - 80 [ACK] Seq=18 Ack= 437 W1n—64128 Len—@ TSval= 1122469523 TSecr=2963602408
712

N OO R WN R

bits), 89 bytes captured (712 bits) 08 00 00 01 00 06 02 42 24
d5 bb e5 el 40 00 40 06 fc ab

Linux cooked capture v2 11 7 a8 00 50 25 e4 eb6
; . . P ac e7 a cc ed e
Internet Protocol Version 4, Src: 172.17.0.1, Dst: 172.17.0.2 08 a3 58 5d 00 00 01 91 98 @a

Transmission Control Protocol, Src Port: 59304, Dst Port: 8@, Seq: 1, Ack: 1, Len: [poap 42 e7 48 41 45 20 2f 69 6e 64 B 6 HAE /ind
Hypertext Transfer Protocol 0050 65 78 Qa ex.html:
File Data: 17 bytes
Data (17 bytes)
Data: 484145202f696e6465782e68746d6c0d0a
[Length: 17]

Frame 4: 89 bytes on wire (

Some Challenges

\\

* Quantifying the quality of the
results — how well would this work in
practice?

« Complex fields — length, checksum,
encryption, ...)

* Protocols are not everything — real
system behavior is not explained by
protocols only

« Can we rely on this? — correctness

behaviors Che‘-'k'”g

|F|eld F wrong I
Example ‘I LLM | @ Manual

System, e.g., a webserver

Applicatioii

But what does this mean?

\\

We've found this exciting

Further work needed

But are there broader implications?

There seems to many levels at which
generative Al can be applied, even in
networking

Please consider what patterns, languages,
Inputs your problem needs

	Slide 1: Using LLMs in Networking The case for understanding protocol “languages”
	Slide 2: Context and goals
	Slide 3: Context and goals
	Slide 4: Example Use Case: Diagnostics
	Slide 5: Use Case Context: Training traces & Problem traces
	Slide 6
	Slide 7: Some Challenges
	Slide 8: But what does this mean?

