

IPv4 to IPv6 Transition Approaches Discussion

Hu Jun

October 25, 2009

Content

- 1. Driver
- 2. Temporary address assignment
- 3. NAT
- 4. A+P
- 5. Dual Stack lite
- 6. Summary

IPv4 address depletion

Current Projections:

- IANA unallocated address pool exhaustion: 2011
- RIR unallocated address pool exhaustion: 2012
- All IPv4@ in use: 2015-16

Remarks:

- IANA may release additional reserved IPv4 blocks
- Service providers may deploy NAT
- 4G wireless and machine-tomachine traffic may boost demand for addresses

- 1 IANA Exhaustion
- 2 RIR Exhaustion

Back where we were 20 years ago but the problem is bigger and there's no easy fix

IPv6 status

Observations:

IPv6 prevalence is still low, but growing by the week

Large variations among countries, due to single deployments (eg. free.fr)

Most IPv6 connectivity through tunneling (Windows: Teredo; MAC: 6to4 [Airport Extreme], ...)

Over 50% of allocated IPv6 prefixes are not visible

Graphics: Allocations over Time

Graphics: Total Prefixes - 7 years

Source: RIPE-58

Problems

- End User doesn't care/know about IPv4/IPv6
- Content provide doesn't have same pressure as the service provider
- So IPv4-only content will still be around for quite some time
- How do we ensure IPv4 content access continuity in during ipv4-ipv6 transition?

Solution 1: Temporary Address Assignment

Temporary address assignment

Mechanism:

- The UE requests an IPv4 address whenever the user starts an application that requires IPv4 communication
- Some time after the application terminates (to be determined by the UE), the associated default bearer and IPv4 address are released

Advantages:

Does not require NAT

Disadvantages:

- Need extension to OS/APP
- Significant increase of signaling load (bearer set up plus registration for relevant applications)
- Can not support IPv4 "always-on" or "server-like" application.
- May have issue during busy hour

3

Solution 2: Network Address Translation

Network Address Translation (NAT)

There are two solutions that involve NAT:

2a: use IPv6-only devices; requires v6-v4 NAT (NAT64)

2b: assign private IPv4 addresses; requires v4-v4 NAT (NAT44)

In both cases:

- End-to-end IPv6 is used when the UE communicates with IPv6-enabled hosts
- NAT is used when the UE communicates with IPv4-only hosts

NAT64 & DNS64 (Continued)

- Addresses IPv6-only hosts communicating with IPv4-only servers
- Does not cater to IPv4-only hosts (such as Windows 98, or non-enabled IPv6 hosts)
- Requires a complementary DNS function (DNS64).
- As transport is IPv6 Windows XP is not supported! (Windows XP only supports v4 DNS)
- Uses synthetic AAAA records in the DNS64 function
- IPv4 address overloading (or sharing) still occurs with source NAPT

- Each UE will be assigned a private IPv4 address
- •UE's private IPv4 address will be translate into public address in NAT44 GW
- Today deployed technology

ALU Proposal:Layer2-Aware NAT

TEID	Inside IP	Inside Port	Outside IP	Outside Port	Protocol
0x11111111	1.2.3.4	100	202.96.202.100	100	TCP
0x2222222	1.2.3.4	200	202.96.202.100	200	TCP
0x33333333	1.2.3.4	100	202.96.202.100	300	TCP

- Each UE can have same IPv4 address
- ●L2-aware NAT will use session identification (TEID) for NAT map entry and downstream routing
- Greatly simplify the address management

NAT44 is preferable to NAT64

NAT44 and NAT64 have the same disadvantages:

Break application experience

Both have essentially the same implementation complexity

However, NAT44 is preferable to NAT64:

- NAT44 is widely deployed; NAT64 is still being standardized
- NAT44 only requires modification of IP address and port numbers; NAT64 requires a mapping between different header formats NAT64 requires alignment with mapping performed by DNS servers; NAT44 has no such dependency

Solution 3: Address + Port (A+P)

Address + Port (A+P)

Mechanism:

- At attachment, the PGW assigns a (public) IPv4 address plus a range of port numbers to a UE
 - The same IP address is used for multiple UEs; port ranges are chosen so that they don't overlap
- The UE uses a port number from the assigned range for traffic it generates
- When routing Internet traffic to one of the UEs, the PDN Gateway must make a forwarding decision based on IP address and port number

The term A+P comes from Internet Draft draft-ymbk-aplusp, which proposes this technique in a slightly different context

Address + Port (A+P) - cont'd

Advantages:

 Compared to the use of private v4 addresses with NAT44, the A+P approach is much more transparent

Disadvantages:

- To benefit from the A+P approach, the method must be supported by PDN GWs and UE devices
 - Private IP addresses could be assigned to UEs that don't support this method

Solution 4: Dual-Stack Lite

Dual-Stack lite

Dual-Stack Lite (Continued)

- Addresses mobile operators who want IPv6-only core networks
- Tunnels IPv4 in a IP tunnel using IPv6 transport (a Softwire)
- NAP44 can be performed in the Softwire Concentrator or use A+P
- Be aware about obfuscation of the IPv4 traffic as a result of tunnelling

Summary

- 1. Transition to IPv6 is mainly driven by technical, not business, so it tend to cost money instead of bring in revenue.
- 2. IPv6 is the ultimate solution, internet community should move to IPv6 end-toend ASAP!
- 3. However before that, current transition solutions all have limitations, so why don't we start with cheapest one: Dual-Stack+NAT44