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Abstract

Protecting users’ privacy is essential for turning networks and services
into trustworthy friends. Many privacy enhancing techniques, such as
anonymous e-cash and mix-nets, have been proposed to make users more
comfortable in their network usage. These techniques, in turn, usually
rely on very basic security mechanisms, e.g., confidentiality protection, for
their realization. But these mechanisms are also used for other security
related reasons.

In this paper, we make some new observations on how security can
degrade privacy. For example, using security as a component of an ad-
vanced privacy enhancing technique may not have the effect we expect;
i.e., too careless application of security may defeat the assumed privacy
gains. In particular, introducing new identifiers may make it easier to
track users. This effect is especially harmful to mobile users. Even in
cases when privacy is not the main driver for the use of security, we be-
lieve that identifiers require special attention in some circumstances.

We propose a mechanism, which we call to allow the communicat-
ing parties to continuously change the identifiers they use, without any
signalling and without adverse affects on realibility or security.

1 Introduction

In communication systems where the user terminals and/or the users are mobile,
preventing tracking of users and equipment is important for privacy reasons.
The main challenge in preventing tracking is to avoid the use of long-term or
easy-to-correlate protocol information that constitutes explicit “identifiers” or
otherwise allows users to be identified. Even if the identifiers cannot be tied to
a physical entity, they may make possible to follow the same entity as it moves
from one place to another (where the “place” may be geographical, i.e. physical,
or logical, e.g. a network address).
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Some telecommunications mechanisms take this into account already now,
and can use frequently and/or randomly changing identifiers. For example, in
GSM, the so-called TIMSI, Temporary IMSI (International Mobile Subscriber
Identifier), is used to hide the true IMSI. However, in general, such techniques
are not useful unless they are enforced throughout the protocol stack. For in-
stance, while Wireless LAN authentication mechanisms can employ pseudonyms,
see [5, 2], or even completely hide the authentication exchange from others [6],
this is of limited value as long as fixed link layer identifiers (e.g. MAC addresses)
are used at a lower layer.

The problem exists in many forms. A particularly visible example is the
transmission of cleartext, human-readable user identities such as Network Access
Identifiers (NAIs) [1]. Similar problems appear for the transmission of stable
but “meaningless” identifiers, such as IP addresses [10]. A less known problem
is that even data that is completely independent of any real “identifier” can be
used to track users. For instance, an IPsec SPI [8] can reveal that a node in
one place is the same node as a node that appears later in another location, if
the SPI value has not changed even though the IP addresses are no longer the
same. For example, with a 32-bit SPI, the chance is about 1 in 4 billion that it is
not the same user if the SPIs are the same. This is particularly problematic for
Internet Key Exchange (IKE) Security Parameter Indices (SPIs), as there is no
possibility for efficiently renegotiating IKE SPIs without revealing the previous
SPIs in the process. For IPsec SPIs this is less of a problem, as the SPIs can be
re-negotiated within the protection of the IKE SA, hence hiding the change from
outsiders. Nonetheless, the problem remains that privacy enhancing measures
can sometimes be defeated by unexpected factors.

The same problem arises in certain authentication mechanisms. For authen-
tication purposes, a popular techniques is the use of public key cryptography.
For efficiency reasons, symmetric cryptography based counterparts are gaining
popularity in the form of so-called hash chains. A quite well-known problem
with public keys is that the key, even if not tied to an identity, leaves “traces”
of the user, since anybody can verify authenticity using the public key. How-
ever, one easily forgets that also a hash chain is easily linkable in the forward
direction by applying the hash.

Even data that changes for every packet can be used to track users. For
instance, TCP or IPsec sequence numbers may in some cases be sufficient for
the identification of equipment even if no other stable identifiers are present.
As long as the sequence number space is sufficiently large and nodes distributed
along to a sufficient degree, a node that presents a sequence number N in one
place and N + 1 (or something close to it) in another place shortly thereafter is
likely to be the same node.

1.1 Related work

Hiding identifiers and other communications inside a protected tunnel or tunnels
is used in protocols such as TLS or IPsec. The drawback of this solution is that
often other identifiers still remain visible outside the “tunnel”.
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Another approach is the use of “pseudonyms”. This approach is used in
GSM [11], among others. In this technique, an identifier is used for login to a
service, and the service returns an encrypted token that the client can decrypt
and use as the identifier for logging into the service the next time. A drawback
of this scheme is that the new pseudonym has to be returned, which adds to the
amount of signalling necessary. In any case, this solution may not be possible in
all situations. For instance, the protection of sequence numbers in this manner
would be possible in TCP as there are ACKs, but would be hard in IPsec because
there may not be traffic in the return direction before a new packet needs to be
sent. In any case, waiting for the new pseudonym before a second packet can
be sent is inefficient.

Removing sequence numbers (and thereby linkability) may be considered as
an option. However, with present art this is not a universally viable, as it creates
a sender/receiver synchronisation problem, at least when used with unreliable
data transport mechanisms such as IP.

For public keys and hash chains, an available method to improve privacy is
to frequently generate new public keys/hash chains. However, this is computa-
tionally quite expensive.

Recently, [9] proposes some mechanisms for address location privacy in
MIPv6.

As mentioned in the abstract, some very sophisticated techniques for sender-
receiver untraceability have been proposed, e.g. Chaum’s mix-nets [3]. However,
such mechanisms are far too cumbersome to use for “everyday” communication,
and relies on the help of “mixing nodes”.

2 A practical example

Let us consider an example where Alice and Bob are communicating over the
Internet, using IPsec to protect their connection1. Initially, Alice learns Bob’s
IP address from the DNS, and she initiates IKE by sending an UDP packet
to Bob. Bob learns her current IP address from the received UDP packet.
As a result of running IKE, Alice and Bob agree upon an IKE SPI, a pair
of Encapsulated Security Payload (ESP) SPIs, and ESP sequence numbers2.
With the IP addresses, SPIs, and sequences numbers both Alice and Bob and
any outsiders can easily keep track of the ongoing conversation. Furthermore,
the IP addresses reveal the approximate location of the parties.

Now consider a situation where Alice moves to another location. As a con-
sequence, her IP address is changed. This requires some action from her in
order to inform Bob about the new address. One option is to run IKE again,
and create new Security Assocatiations (SAs) and corresponding SPIs. Unfor-
tunately, this is pretty costly, may involve user interaction with token cards, and

1For brevity, we ignore the link layer and physical aspects, but the principles presented in
this paper could be equally applied there.

2IKE protects the public keys against passive attackers; we don’t need to consider them
here.
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with frequent movements would cause disruptions to the connection. Another
option would be to use an underlying mobility service such as Mobile IP [4].
All traffic now flows through Alice’s home agent, hiding her new IP address but
allowing outsiders to easily link her communications from different places. If
an advanced form of mobility, route optimization, is used then all packets carry
a new identifier, Alice’s home address. This can then be used to link different
packets, even if sent from different places.

A third option is the use of IKE extensions (such as NAT traversal or MO-
BIKE) that allow hosts to change their IP address without requiring IKE to
reauthentication. Presumably, at the same time she could negotiate new ESP
SPIs. Unfortunately, the IKE SPI would still reveal her identity, allowing our
eavesdropper to continue tracking the connection and to learn the new IP ad-
dress (and approximate location).

To summarise the current situation, Alice has basically two options: either
she can gain some privacy at a computational or routing cost, by re-running IKE
or using Mobile IP without route optimisation, respectively, or alternatively she
can suffer a privacy loss with the gain of not needing to re-run IKE or suffer
sub-optimal routing.

3 Identification via Pseudo Random Sequences

To overcome the privacy problems caused by identifiers and other easily track-
able protocol values, we propose a method where the constant identifiers or
easily predicatable protocol values are replaced with values drawn from a num-
ber of shared, secretly agreed pseudo-random sequences. That is, as the parties
initiate a shared communication context they agree on a number of pseudo-
random sequences, constituting a sequence of sets of identifiers, in addition to
the usual session keys and other protocol state.

Whenever the sending party wants to avoid identity tracking, it draws the
next set of identifiers in the sequence and uses those identifier values in the
outgoing messages instead of the previous values. This practise works best
whenever there would be a natural rupture in the tracking sequence anyway,
e.g., when the sending party has just changed its location or has been inactive
for a while. This could even happen for every packet. For full privacy, it is crucial
that the sending party replaces the identifiers (and other trackable values) at
all protocol layers at the same time, to prevent linkage across layers.

3.1 Example: Adding Privacy to the MOBIKE Protocol

Let us reconsider the example above. With the proposed MOBIKE protocol in
place, the only value that revealed Alice’s identity was the IKE SPI, s. With our
new mechanism in place, instead of agreeing on just a single fixed SPI value, s,
Alice and Bob would agree on a sequence of SPI values, s0, s1, s2, etc, denoted as
{s}∗. The intial IKE negotiation would use the first value from this sequence,
s0, in the place of the original fixed value. Now, when Alice has moved and
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received a new IP address, she would use the next value in the sequence, s1.
As this value belongs to the sequence that Bob has agreed with Alice, he would
still recognize the message being sent by Alice3. However, any outsiders that
do not have access to the sequence cannot link the SPI values together.

To generate the sequence, Alice and Bob can simply use a keyed pseudo
random number generator with a shared key K derived from the keying material
created during the initial IKE negotiation. Two basic approaches are discussed
below:

Pseudo-random Function: Alice and Bob use a keyed pseudo-random func-
tion (not necessarily invertible), f , and the jth identifier IDj is simply
f(K, j), or more generally f(K, j||IDtype). In practice, a cryptographic
hash such as SHA-256 can be used as f .

Pseudo-random Permutation: Alice and Bob use a keyed pseudo-random
permutation (i.e. an invertible function), π, and the jth identifier IDj is
simply π(K, j), or, π(K, j||baseID). This enables authorized receiver to
reconstruct the baseID, which could be advantageous in some cases. The
permutation π could be instantiated using a block cipher with apropriate
block size, or, using a stream cipher IDj = s(k, j) xor baseID.

Using the method requires no protocol changes; it is enough that Alice and
Bob mutually agree on the pseudo random number generator and how to derive
the shared key from the keying material. Such an agreement could be provided
out-of-band. However, if Internet-wide deployment is desired, a simple extension
can be defined to IKE in order to negotiate the parameters; see Appendix 5.

3.2 Avoiding cross-layer correlation

In order to be effective, the method should be applied to all visible identifiers
and other linkable protocol fields. Furthermore, moving from one set of values
to a next set must be properly synchronized through the stack so that no value
can be used to link the value sets together. For example, consider a complete
protocol stack that includes the link, internetworking, transport, and application
layers protocols L, I, T and A, with linkable identifiers and values IDA

L , IDA
I ,

IDB
I , IDA

T , IDB
T , SNA

T , SNB
T , V ALA1, V ALA2, corresponding to the Alice’s

link layer address, Alice’s and Bob’s IP addresses, the transport layer port and
sequence numbers, and some application layer values. Alice would then define
pseudo random number sequences for each of these values. The first sequence,
{IDA

L}∗, need not be communicated to Bob as it is only used locally. However,
it needs to be changed in synchrony with the other values to prevent correlation.
The second and third sequences, the IP addresses, may not be fully known at
the time the connection is initiated due to movements of the hosts4. All the

3Message integrity and originality is still protected by the same session key.
4However, in IPv6 it would be possible for the two nodes to agree on the interface iden-

tifier parts of their IP addresses. This resembles the idea of cryptographically generated
addresses [?], but instead of address ownership these interface identifiers would be used for
privacy purposes, and be dynamic.

5



other sequences, end-to-end in nature, Alice and Bob need to agree upon.

3.3 Sending packets

In general, our method does not require any changes to existing protocols, other
than providing a mechanisms for the parties to agree on using the method. All
modifications are local to the parties.

The changes at the sending end are fairly simple. When the sending party
decides to move from one set of identifiers to the next set, it simply does so.
That is, when Alice wants to break any on-going linkage, she moves to the
next element all of the above mentioned sequences {IDA

L}∗ . . . {V ALA2}∗, and
sends the next packet using the new values. Typically, such a change would
be triggered by a natural change of some value, e.g., the IP address, but in
principle it can also be initiated at any time. Apart from any local means
needed to associate any lower layer addresses together (such as ARP or IPv6
Neighbor Discovery), no other action is needed by Alice as the sender.

3.4 Matching received packets

At the receiving end the situation is more complex. In general, the receiver
must be prepared not only receive packets using the current identifier values,
but in case of reordering or packet loss, also some past and future values.

In an unmodified protocol, the receiver would accept packets that are identi-
fied with a set of identifiers IDL . . . IDA, corresponding to different protocol lay-
ers, and a serial number that fits in the window SNA

T . . . SNA
T +δ. In our method,

the identifiers would follow the sequences {IDL}∗ . . . {IDA}∗ and, depending on
the use of the serial numbers, the serial numbers would not be communicated at
all or would be periodically changed by drawing new values from a corresponding
sequence. If the receiver currently expects the jth set of identifiers, then it would
accept any identifier sets within the range f(K, j), f(K, j + 1), . . . f(K, j + k),
and update j accordingly. Alternatively, with the pseudo-random permutation
approach, the receiver would retrieve the sender’s j from π−1(K, j).

In a typical hash-table based packet demultiplexing system, the added pro-
cessing cost is neglible. In the case of receiving a packet with the expected jth
set of identifiers, the code basically works just like today. In the case of iden-
tifiers that the hosts have full control over, the situation is simple: instead of
accepting packets only at the jth set of identifiers, the host also accepts packets
on the next k identifier sets.

In some cases accepting packets simultaneously on several identifier sets may
lead to collisions. Typically, the packet hash table lists identifiers for all active
remote peers. In an unmodified system, the identifiers are allocated in a manner
that makes sure that there are no collisions between any identifier sets in use.
When identifier sequences are used, there is the possibility that the ith identifier
set for one peer may completely or partially collide with the jth set of another
peer; in section 3.5 we analyse this in more detail for TCP.
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Generalising, the receiver needs to allocate some additional memory for
matching received packets, and possibly need to be prepared to resolve some
collisions. For most modern computers, such an increase in memory and CPU
use is neglible. The actual cost of collision resolution depends on the protocol,
but appears to be relatively simple in the typical cases.

3.5 Example: Collisions in TCP

Considering the Transmission Control Protcol (TCP), the receiver is normally
prepared to accept packets that are identified with the identifier quadruple
〈IDA

I , IDB
I , IDA

T , IDB
T 〉, where IDA

I is the sender’s IP address, IDB
I is the

receiver’s IP address, IDA
T is the source port, and IDB

T is the destination
port. Furthermore, the packet must match the TCP sequence number window
SNA

T . . . SNA
T + δ. In the current stacks, TCP acknowledgements outside of the

expected window are simply discarded but the packet is otherwise processed.
To be prepared to receive packets using identifier sets j +1 . . . j +k, in addi-

tion to the jth expected set, the situation becomes somewhat more complex. In
the IPv4 world, an additional source of complexity is the inability to know be-
forehand what the next IP address will be. As a consequence, the receiver must
be prepared to accept packets that are identified with any source IP address,
the current local IP address, and the TCP ports matching any of the identifier
sets j + 1 . . . j + k. In other words, in addition to the expected jth identifier
set, it must be prepared to accept packets that are identified by the quadruple
template 〈any, IDB

I , {IDA
T }j+1...j+k, {IDB

T }j+1...j+k〉. The existing TCP code
can be reused to find these potential “shadow” transmission control block (tcb)
candidates for any non-matched packet, at the cost of at most a few hundred
machine instructions.

The sequence and acknowledgement number checks become slightly more
complex. In TCP, the sequence and acknowledgement numbers do not count
packets but bytes. Consequently, the window sizes are typically so large that we
cannot use the pseudo-random sequences directly for them. Instead, a plausible
way seems to keep updating them just as today as long as the jth identifier set
is used, and to add the next value to them as the host moves to j+kth identifier
set.

In more practical terms, for each candidate “shadow” tcb

〈any, IDB
I , {IDA

T }j+i, {IDB
T }j+i〉

the corresponding acceptable sequence number window is

(SNA
T + {SNA

T }j+i) . . . (SNA
T + {SNA

T }j+i) + δA

where SNA
T is the current TCP sequence number as maintained by TCP,

{SNA
T }j+i is the j + ith element from the generated pseudo-random sequence,

and δA is the receive window size. Similarily, the acceptable range of acknowl-
edgements numbers is
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(SNB
T + {SNB

T }j+i) . . . (SNB
T + {SNB

T }j+i) + δB

where δB is the number of sent but unacknowledged bytes.
When receiving a new packet, the TCP stack would first look for a perfect

match. If it finds one, there is little to worry as the tcb is fully qualified by
the sender’s IP address. However, if the packet does not match any existing
tcbs, the stack next needs to look for candidate “shadow” tcbs5. Because the
source IP address does not qualify the “shadow” tcbs, it is possible that a packet
matches more than one. In that case we have a collision; the identifiers alone
are insufficient for determining which of the remote peers have moved to use a
next identifier set.

To resolve collisions, and to make sure that a candidate “shadow” tcb is
really the right one, the receiving host can next check the sequence and ac-
knowledgement windows. If the sequence and acknowledgement numbers in the
packet fall within the updated sequence and acknowledgement windows, the
right session for the packet is likely to be found. However, as the TCP window
sizes can be fairly large, it is possible that the collision cannot be resolved even
with the help of sequence numbers.

If there was a collision, the receiving host may want to verify that it has
found the right “shadow” tcb. To do so, the receiver can send, using the new
identifier set, a TCP packet that carries no data and acknowledges zero new
bytes. The packet triggers retransmission, thereby confirming that the session
is indeed the correct one. Such practise does not appear any more vulnerable
than the current TCP. This optional verification requires the exchange of two
packets.

To quantify the situation, we should estimate the probability of two “shadow”
tcbs to collide. In TCP, the port numbers are 16-bit values and the sequence
and acknowledgement numbers 32-bit values. A typical receive window, δA, is
in the order of 64 kilobytes or less. For the output window δB , we conserva-
tively estimate that its size is equal to the receive window size; usually it is less.
Consequently, the probability of a randomly generated packet matching with a
given “shadow” (tcb) is (at most)

δA · δB

|IDA
T | · |IDB

T | · |SNA
T | · |SNB

T |
=

216 · 216

216 · 216 · 232 · 232
= 2−64 ≈ 10−19.

The probability of a collision between two existing TCP connections depends
on the number of simultaneous active TCP connections. Let us consider a host
that maintains N active TCP connections, holds state for the sequence values
j · · · j + k, and initiates TCP sequence numbers randomly. The probability
of having a “shadow” tcb collision between any given two TCP connections
(assuming δA = δb = δ) is

δ2

|IDA
T | · |IDB

T | · |SNA
T | · |SNB

T |
.

5In the current stack a packet that does not match any existing connection is dropped.
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Consequently, the probability that there will be no collisions with any of the
(N − 1)k incorrect shadows is (at least)(

1 − δ2

|IDA
T | · |IDB

T | · |SNA
T | · |SNB

T |

)(N−1)k

.

As our analysis shows, for most protocols the probability of a packet being
falsely accepted or there being a collision between two existing connections is
relatively low. In the cases we have analysed, it is trivial to compensate for the
collisions by reusing existing protocol mechanisms. For example, if there is a
collision between two integrity protected sessions, attempting to verify the mes-
sage authentication code with both of the possible session keys will determine
the right session.

3.6 Network Impacts

The proposed method is end-to-end in nature, and in general does not impact
other nodes, as long as packets can be freely sent to their destinations. However,
it is fair to note that changing identifiers such as addresses or port numbers
can be problematic from the point of view of firewalls, NATs, and network
access control tools such as 802.1X, all of which may keep state related to
the identifiers. In addition, the efficiency of bridge learning protocols may be
impacted by frequent change of MAC addresses.

4 Protecting other parameters

4.1 Public key traceability

In the introduction, we mentioned problems with the traces left by public keys,
which we have not really delt with so far. As mentioned, we do not want to
frequently generate completely new keys, using expensive number theoretic op-
erations. The main use of public keys in security protocols are for key exchange,
and here there are some well-known hybrids between asymmetric and symmet-
ric cryptography that we can use. Specifically, one could use Diffie-Hellman key
exchange, authenticated by the shared symmetric key and a MIC, rather than
using, say RSA signatures. Since the DH values gx, gy are random for each
protocol execution, there is no useful information extractable from these and
the corresponding MIC values.

4.2 Hash chains

Hash chains may also need to be made unlinkable. This is easily achieved by,
instead of using hj = H(hj−1), taking a keyed variant hj = H(K||hj−1). The
chain is still easily forwards verifiable, but only by parties sharing K. Note that
here, it is important that H is a one-way function, i.e. using a pseudo-random
permutation hj = π(K, hj−1), would defeat security as the chain then becomes
reversible.
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4.3 Mobility Parameters

Mobile IP home addresses could be pseudo-random sequences instead of current
stable, real IP addresses.

5 Summary

In this paper we have outlined a generic method where fixed or easily predictable
identifiers and protocol field values are replaced with values drawn from a set
of mutually agreed pseudo-random number sequences. The resulting sequence
of protocol packets can be easily processed by the receiving party with mod-
est requirements for additional memory and processing, while being completely
untraceable by any outsider observers.
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Appendix A. IKE extension

To be filled in.
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